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INTRODUCTION 

Over the last  two decades, considerable   effor t   has  been d i r ec t ed  toward  under- 
standing  the  supersonic-hypersonic  aerothermodynamic phenomena associated  with a 
vehicle  entering  the  atmosphere of Earth or another  planet.  During  the Apollo period 
of  the  1960's, a mostly  experimental  data  base w a s  used to  design, or ver i fy   the  
performance  of,  an  Earth  entry  vehicle. Ground-based f a c i l i t i e s ,  each  capable  of 
simulating  the Mach number and  Reynolds number of a por t ion  of the   en t ry   t ra jec tory ,  
c o l l e c t i v e l y   e s t a b l i s h e d   t h i s  data base. A s  i n t e r e s t  expanded  beyond Earth  entry t o  
en t ry   i n to   t he  atmosphere  of Mars i n   t h e  late 1960's,  ground-based f a c i l i t i e s  con- 
t inued to  cont r ibu te   d i rec t ly  toward understanding  the  f low  characterist ics encoun- 
t e r ed  by a blunt  probe  entering  an  atmosphere  other  than  that  of Earth. However, as 
t h i s   i n t e r e s t   i n   s c i e n t i f i c   e x p l o r a t i o n  expanded  toward Venus and the  outer   planets ,  
designers  of aeroshe l l s   for   the   p robes   re l ied  more on flow f ie lds   p red ic ted   wi th  
ana ly t i ca l  methods. This   re l iance  on predic t ion  w a s  necessary  because  existing 
f a c i l i t i e s  were not  capable of simulating or duplicating  the  severe  environment 
encountered by a vehicle  entering  the  atmosphere of Venus or an  outer   planet .  Even 
so, ground-based fac i l i t i es   p layed   an   impor tan t   ro le   in   es tab l i sh ing  a data base f o r  
Earth and planetary  entry  during  the  1970's,   for example, during  the Space Shu t t l e  
development. 

Often,  the  support  provided by ground-based f a c i l i t i e s  is  ind i r ec t .  A s  analyt- 
ical  methods emerge from the  developmental  stage,  their  predictions are of ten com- 
pared  with measurements.  Consider the  hypothetical  development of a numerical method 
f o r  computing  supersonic  and  hypersonic  flow  characteristics  about a b lun t  body. The 
f i rs t  phase of t h i s  development may be to  compute the  inviscid  f low  f ie ld   about   the 
b lunt  body a t  zero  incidence  with  ideal-gas  behavior assumed. These predic t ions  may 
be compared with measured  shock  detachment dis tance and surface  pressure  dis t r ibu-  
t i ons  on the   b lunt  body. Af t e r   ve r i f i ca t ion  of th i s   inv isc id   idea l -gas  method, the 
e f f e c t s  of v i scos i ty  may be  incorporated, and predicted and  measured convective  heat- 
t ransfer  rates may be compared to  va l ida te   the  method. Next, the   capabi l i ty  of pre- 
d i c t i n g  flow  conditions  about  the body a t  incidence may be  included,  and  predictions 
again compared with measurement. As development of the code continues, complex  phe- 
nomena such as turbulence,  massive  blowing  simulating  surface material lost  due t o  
ablation,  and  real-gas  chemistry  including  nonequilibrium  effects  and  radiation are 
added. A t  t h i s   p o i n t   i n   t h e  development,  ground-based f a c i l i t i e s   b e g i n  t o  f a l l   s h o r t  
of providing a credible  experimental   data  base  for comparison. The scarci ty   of  
experimental  data on real-gas  f low  characterist ics  about  blunt bodies a t  incidence 
motivated, i n  part, the  present  study. 

Synonymous wi th   rea l -gas   e f fec ts  are large  values  of the normal-shock densi ty  
ratio,  which is  the  primary parameter governing  the flow about a b lun t  body a t  hyper- 
sonic  speeds  (refs.  1 and 2 ) .  This  high  density ra t io  i s  due to  exc i t a t ion  of vibra- 
t ion,   dissociation,  and  ionization  energy modes of the  atmospheric  gas  passing 
through  the bow shock. To i l l u s t r a t e   t h e   d i f f e r e n c e   i n   d e n s i t y  ratios e x i s t i n g  
between conventional wind tunnels   and   f l igh t ,  a ra t io  of only 5 t o  6 i s  produced i n  a 
conventional  hypersonic  tunnel  using a i r  or nitrogen as the test medium, whereas a 
vehicle  encounters ratios 3 times larger on entering  the  atmosphere of Earth  and 
4 times l a r g e r  on entering  the  predominantly C02 atmosphere  of Venus. Duplication of 



real-gas phenomena i n  hypersonic  flow i n  a ground-based f a c i l i t y  is a formidable 
task. A few o p e r a t i o n a l   f a c i l i t i e s  can generate very  high  veloci t ies  a t  hypersonic 
conditions,   but  for  extremely  short   run times ( f o r  example, see refs .  2 to  6 ) .  
Although these impulse-type f a c i l i t i e s  are va luab le   t oo l s   i n   t he   s tudy  of real-gas 
effects ,   they  lack many of the advantages   (par t icu lar ly   in   the  area of data   acquis i -  
t i on )  of a conventional wind tunnel. An a l t e r n a t i v e  method  of generating  high 
normal-shock dens i ty  ratios is  t o  use a test  gas  with a low ra t io  of specific hea t s  
i n  a conventional wind tunnel   ( refs .  1, 7,  and 8 ) .  With such a test medium, high 
dens i ty  ratios can be generated a t  r e l a t i v e l y  law enthalpies,   and  thus complex real- 
gas  chemistry  can  be  avoided.  For  example, the Langley  Hypersonic CF4 Tunnel 
( r e f .  9 )  generates  a densi ty  ratio of 12 a t  a Mach number of 6 ,  whereas  the  Langley 
20-Inch Mach 6 Tunnel ( r e f s .  10 and 11)  generates a d e n s i t y   r a t i o  of 5.3 i n  a i r .  

The Langley  Research  Center  has  been  developing  sophisticated  computer  programs 
t o  predict the  f law  conditions  about  planetary probes. Because  of  Langley's  hyper- 
s o n i c   f a c i l i t y  complex ( r e f s .  12 and 13),   including  the  only  high-density-ratio con- 
vent ional  wind tunnel (CF4 tunnel )   opera t ing   in   the   Uni ted  States, researchers  have 
the   oppor tuni ty   to   va l ida te   the i r   numer ica l   t echniques   wi th   da ta  from t h e s e   f a c i l i -  
ties. Thus, a study w a s  conducted on several   b lunt   bodies  a t  i nc idence   i n  a  number 
of hypersonic f a c i l i t i e s   o v e r  a range of Mach number, Reynolds number, and  density 
r a t i o ,  and var ious   p red ic t ions  were compared with  this   experimental  data base. 

The purpose of t h i s  report i s  t o   p r e s e n t  shock  shapes,   pressure  distributions,  
and  aerodynamic coe f f i c i en t s  measured  on analytical   shapes  (hyperboloid  with  an 
asymptotic  angle of  450, "sonic-corner"  paraboloid,  and  paraboloid  with  an  angle of 
27.60 a t  the   base) ,  a Viking  aeroshell   generated  in a generalized  orthogonal  coordi- 
nate  system  (ref.  141,  and a family of cones  having a 45O half-angle   and  different  
nose  shapes  (spherical ,   f lat tened, concave,  and  cusp)  corresponding t o  predicted  heat  
shield  losses   during  Jovian  entry.   These  data ,   obtained  in   the  Langley Continuous- 
Flow Hypersonic  Tunnel,  20-Inch Mach 6 Tunnel,  and  Hypersonic CF4 Tunnel,  cover a 
Mach number range  from 6 t o  10, a free-stream  unit  Reynolds number range from 2 x 10 
t o  27 X 1 O6 m-' , a dens i ty   ra t io   range  from 5.3 t o  12,  and  an  angle of attack  range 
from Oo t o  2 0 ° .  L i m i t e d  heat- t ransfer   data   obtained on the  hyperboloid  and par&* 
l o i d   i n  Mach 6 a i r  are p resen ted   i n   t he  appendix. Also presented are comparisons 
between  measurements  and predic t ions  f r o m  simple theo r i e s  and  numerical  flaw f i e l d  
programs. 
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SYMBOLS 

A model base  area,  m 2 

CA axial-force  coeff ic ient ,   Axial  force/q-A 

cD 

CL 

Cm pitching-moment coef f ic ien t ,   P i tch ing  mornent/q-A% 

CN normal-force coe f f i c i en t ,  Normal force/q-A 

drag   coef f ic ien t ,  CN s i n  a + CA cos  a 

l i f t   c o e f f i c i e n t ,   c o s  a - CA s i n  a 

d diameter , m 

9 acce lera t ion  due to  gravi ty ,  9.8 m/sec 
2 
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L/D l i f  t -drag  ra t io ,  s / C D  

M Mach number 

u n i t  Reynolds number , m -1 
! NRe 

A' pressure,  Pa 

q dynamic pressure,  Pa 

4 heat - t ransfer   ra te ,  w/m 2 

r rad ius   o r   rad ius  of curvature of outer  surface,  m 

S surface  length from geometric  stagnation  point a t  zero incidence, m 

T temperature, K 

U veloci ty ,  m/sec 

X8 Y rectangular  coordinates 

a angle of a t tack ,  deg 

B coordinate i n  generalized  orthogonal  coordinate  system,  equal  to 180° a t  the 
nose 

Y r a t i o  of spec i f ic   hea ts  

tl acute  angle between a x i s  of symmetry and  tangent  to  outer  surface 

e cone  half-angle  or  asymptotic  angle of ana ly t i ca l  model,  deg 

P density , kg/m 

7 s k i n  thickness, m 

0 circumferential   angle (Oo leeward, 180° windward) 

3 

Subscripts:  

b model base  or  corner 

ca l c  calculated 

ef f eff ec.tive 

m measured 

n nose 

S ' surface 

SPh sphere 



FACILITIES AND TEST METHODS 

Langley  Hypersonic CF4 Tunnel 

The Langley  Hypersonic CF4 Tunnel is a conventional blowdown wind tunnel   tha t  
u s e s  Dupont Freon 14 (tetrafluoromethane ( C F 4 ) )  as  the  test  gas. T h i s   f a c i l i t y ,  
shown s c h e m a t i c a l l y   i n   f i g u r e   l ( a ) ,  is  desc r ibed   i n  detai l  i n   r e f e rence  9. Two lead- 
bath hea ters   connec ted   in  parallel, each  containing 9.1 M g  of lead and  440-volt 
r e s i s t ance   hea t e r s ,  are used t o   h e a t   t h e  CF4 to the desired temperature. The high- 
pressure  heated CF4 i s  in t roduced   in to  the s e t t l i n g  chamber and  subsequently expanded 
through  an  axisymmetric  contoured  nozzle.  Approximately 3 seconds are required t o  
establish steady flow a t  the  nozzle  exit ,   and for  the   p re sen t  tests, the to ta l  run 
t i m e  w a s  10 seconds. A f t e r  t e s t ing ,  the contents  of the  vacuum sphere are  exhausted 
i n t o  a CF4 reclaimer system t h a t   l i q u e f i e s  the CF4, exhausts  gaseous  impurit ies to  
the atmosphere, passes the compressed liquid  through a vaporizer,   and stores the 
high-pressure  gaseous CF4 i n   b o t t l e s .  

The model is  pos i t ioned  a t  the   nozz le   ex i t  by a pneumatical ly   dr iven  inject ion 
mechanism w i t h  t he   cen te r   o f   p i t ch   ro t a t ion   f i xed  on the  nozzle   center   l ine.  The 
angle  of attack may be varied  over f20°  with a s t r a i g h t   s t i n g .  The i n j e c t i o n  time 
( time requ i r ed   fo r  the model t o  move from the   p rerun   pos i t ion  to  the nozzle  center 
l i n e )  i s  approximately 1.5 seconds  and  retraction t i m e  i s  approximately 2 seconds. 

Pitot-pressure  surveys measured a t  the  nozzle   exi t   and downstream  of t h e   e x i t  
f o r  nominal reservoir  temperatures of 608, 717, and  815 K and a range of reservoi r  
pressure  from  6.9 t o  17.6 MPa are presented   in   re fe rence   9 .  These surveys demon- 
s t ra te  the ex is tence  of a uniform tes t  core having a diameter of approximately 2 8  c m  
(0.55 times the nozz le   ex i t  diameter) a t  the maximum test values  of reservoi r  pres- 
sure  and  temperature. The contoured  axisymmetric  nozzle w a s  designed  for a r e se rvo i r  
pressure  of 17.6 MPa and a temperature  of 81 1 K. When the f a c i l i t y  i s  operated a t  
off-design  reservoir  conditions,   spikes  and dips in   t he   p i to t -p re s su re  prof i les  occur 
near the nozz le   cen ter   l ine   ( re f .  9 ) .  The average p i t o t  pressure across the test 
core decreased 3 t o  4 percent   wi th   an   ax ia l   var ia t ion  of 20.3 cm downstream of the  
nozz le   ex i t  (ref. 91, with the corresponding free-stream Mach number var ia t ion   be ing  
about  0.3 percent .  Flow conditions  vary  negligibly  over  the  axial   distance  occupied 
by the p resen t  models. 



Langley  20-Ilich Mach 6 Tunnel 

The Langley  20-Inch Mach 6 Tunnel (refs. 10 and 11) is a bl.owdown wind tunnel 
t h a t   u s e s  dry a i r  as  the test gas- Air 1s supplied a t  4.14 MPa and  heated to  a maxi- 
mum temperature of 560 K by an  electrical res i s tance  heater. The maximum reservoir 
p.ressufe .,is 3 - 5  ~h~ general arrangement of this f a c i l i t y  i s  shown schematically 
i n   f i g u r e  l(b1. A fixed-geometry  two-dimensional  contoured  nozzle is used. The 
parallel  sidewalls form a 0.86-cm by 50.8-cm throat sect ion  and 52.1-cm by 50.8-cm 
test section,  and the length from the nozzle   throat  to  the test sec t ion  window cen te r  
l i n e  i s  2.27 m. T h i s  tunnel is equipped  with a movable  second minimum and  exhausts 
either i n t o  a vacuum, sphere or  to the atmosphere  through  an  annular a i r  ejector. The 
maximum run time is  2 minutes  with  the  sphere  and 20 minutes  with  the ejector. 

Models were mounted  on the i n j e c t i o n  system located below the test sect ion.  
T h i s  system  includes a remote-controlled  sting  support  system capable of moving the 
model through  an  angle of attack range  from -50 to  +550; -the sideslip angle  range i s  
from O o  t o  -loo. For the pressure  tests, the model w a s  p o s i t i o n e d   i n   t h e  test sec- 
t i o n  a t  the desired  angle  of a t tack  during  tunnel  start because of i n s u f f i c i e n t  
length  of pressure  tubing. . For force and moment tests, the  model w a s  i n j e c t e d   i n t o  
the test sec t ion  after steady flow had  been  achieved. I n j e c t i o n  time over the l a s t  
24.9 c m  w a s  about  0.9  second  with a maximum 29  acce lera t ion .  Angle  of attack fo r  the  
fo rce  and moment tests and f o r  some of the  pressure tests w a s  varied during the run. 
Angle  of at tack was set op t i ca l ly  by us ing  a po in t   l i gh t   sou rce   ad jacen t  t o  the t es t  
section  and a small l ens -p r im mounted on the  tapered  cyl indrical   sect ion  extending 
behind  the force models o r  mounted perpendicular t o  the  base  of  the  pressure models. 
The image  of the source was reflected by the prim and focused by the  lens   onto a 
ca l ibra t ion   board ,  which w a s  viewed w i t h  a c losed-c i rcu i t   v ideo  system. The accuracy 
of determining  angle of attack i n  t h i s  manner i s  estimated t o  be f0.25O. For force 
tests, measurements were made a t  e ight  angles  of a t t ack  ( O O ,  20° ,  16O,  12O, 8 O ,  4O, 
O o ,  -4O 1 during each test. 

A s ing le   p i to t -p re s su re  probe w a s  i n se r t ed   i n to   t he   t unne l  from the  top of the  
tes t  sec t ion  and  positioned 6.35 mm downstream of the   cen ter  of the schl ie ren  window 
and 10.2 c m  above  and to  the  r ight   ( looking  upstream) of the nozzle   center   l ine.  The 
leading edges of the  pressure models a t  zero  incidence were p o s i t i o n e d   i n  the same 
p lane  a s  the p i t o t  probe;  the  leading  edges of the fo rce  models were approximately 
3.8 a n  upstream of t h i s  plane,  because of the more a f t  loca t ion  of the small lens- 
p r i m  mounted on the  tapered  cyl indrical   sect ion  behind the force models. Pi tot-  
pressure  surveys a t  the center  of the   sch l ie ren  winduw show the  exis tence of a 27-cm 
by 33-cm test co re   fo r   r e se rvo i r   p re s su res  from 0.5 t o  3 MPa (ref. 10) .   For   th i s  
range of pressure ,  the Mach number va r i a t ion  across the  core w a s  less than  0.03, 
corresponding t o  a p i to t -pressure   var ia t ion  of about 2 percent .  The flow condi t ions 
change negl ig ib ly   over   the   ax ia l  space occupied by the p resen t  models. 

Langley  Continuous-Flaw  Hypersonic  Tunnel 

The Langley  Continuous-Flow  Hypersonic  Tunnel (ref. 12) w a s  ope ra t ed   i n  the 
blkdown mode fo r  the   p re sen t  tests. The CFHT, s h w n   s c h e m a t i c a l l y   i n   f i g u r e   l ( c ) ,  
uses  a water-cooled three-dimensional  contoured  nozzle t o  generate  a nominal Mach 
number of 10 w i t h  dry a i r   a s  the tes t  gas. The nozzle throat is 2.54 c m  square  and 
the test  sec t ion  is 78.7 c m  square. A i r  f o r  the s e t t l i n g  chamber i s  supplied a t  
34.5 MPa, and  the maximum opera t ing   reservoi r   p ressure  i s  15.2 MPa. The maximum 
reservoir  stagnation  temperature of the air ,  heated by a 15-MW electric r e s i s t ance  
tube heater, i s  1060 K. A low-pressure preheat of the nozzle w a l l s  i s  performed 
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p r i o r   t o  a r ~ n -  The ~ X i m U m  run time i n  the  blowdown  mode, using two, 12.2-m- 
diameter vacuum Spheres, is 60 t o  80 seconds. 

Before a run,  the model i s  pos i t ioned  i n  an injection chamber on the  s ide of t h e  
tunnel. This chamber allows access   t o   t he  model without  opening the tes t   sec tdon  to 
the  atmosphere  or  shutting the tunnel down during'  the continuous operatinq-m&3. Thc 
i n j e c t i o n  system  can  rapidly  (about 0.5 sec) i n s e r t  a model f o r   h e a t - t r a n s f e r   t e s t s  
o r   i n s e r t  a  model a t  low acce le ra t ion   fo r   fo rce  tests. T h i s  system is capable of 
changing  the  angle of a t t ack  of a model So per  second f o r  a range of 'f90°. 

. MODELS 

Expressions  describing  the  surface  coordinates of the  models  tested are a s  
follows  (because these models were f ab r i ca t ed  from e x p r e s s i o n s   i n  which the  quanti- 
ties x and y were i n   i n c h e s ,  x and y are a l s o  i n  inches   in   the   fo l lowing  
equat ions;   the   angle  $ is  in   deg rees ) :  

Model 1 - Hyperboloid 

y = J,2+, 
where the model nose i s  loca ted  a t  the   o r ig in  ( x  = 0 ,  y = 0 ) .  

Model 2 - Sonic-corner  paraboloid 

Forebody: y = 2.0466 6 

Afterbody: y = 47.647535 - 3.81968~ 

Model 3 - Paraboloid 

y = 1.4472fi 

Model 4 - Viking  aeroshel l  ( i n  generalized  orthogonal  coordinate system 
( r e f .  14)) 

x = 0,90021326 cos $ + 0.07515984 cos 28 + 0.07121531 cos 38 

- 0.05382820 COS 48 

y = 1.90412851 s i n  $ - 0.07515984 s i n  2 $ - 0.07121531 s i n  3 8  

(1 a) 

( l b )  

(IC) 

+ 0.05382820 s i n  48 J 
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where $ = l 8 O o  corresponds to  the no'se and $ varies f r o m  Oo to 180° over t h e  
body. (These  expressions for x and y approximate a spher ica l ly  blunted cone 
forebody  with a half-angle of 70O.) 

x = l - d l - y  2 

X = y - 0.41421 

( X  < 0.29289 in .  ) 7 

( x  > o -29289 i n .  (cone  section) J 

Model 6 - 45O cone  with  f la t tened  nose 

x r = 0.07352 - 0.05983 + 1 . 5 6 4 4 3 ( t r  - 13.37559(k)3 
b r b 

X = y - 0.41421 ( X  > 0.29289 i n . ) J  

Model 7 - 45O cone  with  concave  nose 

X 
2 3 

" r - 0.14512 + 0.03171 5 - 6.80355(t)  + 39.22126(t) 
b b 

- 78.127995(k7  + 5 9 . 7 7 1 0 9 ( k r   ( l g )  

( x  < 0.29289 in . ,  rb = 2.0 in .  ) 

X = y - 0.41421 ( X  > 0.29289 i n .  ) J 
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Model 8 - 45O cone with  cusp nos'e 

= -2.28402 x + 2.08333 X 10-1 $- - 1.25246 x lo1  r b  b ( rb)l 

+ 2.56585 X lo2 - 1.71023 % 1 0 3 ( k r  + 5.153355 * (..)I 
- 7.182985 X lo3 + 3.73900 X .  lo3 

X = y - 0.41421 

(x < 0.29289 in . ,  rb = 2.0 i n . )  

( x  > 0.29289 i n . )  
d 

The base diameter f o r  a l l  models i s  10.16 cm. Models were mounted on 2.54-cm- 
diameter   s t ings,  whose r a t i o  of length to  diameter  always  exceeded 3. Planform  views 
of the models a r e  shown i n  f i gu re  2. 

Pressure  models were fabricated  for   the  e ight   shapes,   and  force models were 
f a b r i c a t e d   f o r  models  1,  3, 5, 6,  7 ,  and 8. The force models were machined  from type 
347 s ta in less  s t e e l ,  as  w a s  pressure model 1. Pressure  models 2 t o  8 were cast o u t  
of  aluminum. A wooden pa t t e rn ,  1.52 mm overs ize  to  allow for shrinkage  and machin- 
ing,  w a s  made wi th   the   o r i f ices   loca ted  on it ( f i g .   3 ( a ) ) .  A sand mold w a s  made from 
t h i s   p a t t e r n ,   s t a i n l e s s  steel tubing w a s  i n s t a l l e d  i n  the  mold cavity  and  connected 
t o  t h e   o r i f i c e   l o c a t i o n s   ( f i g .   3 ( b ) ) ,  and the   cav i ty  w a s  f i l l e d   w i t h  aluminum 355-T6. 
A f t e r  so l id i fy ing ,   t he  cast model w a s  removed f r o m  the  sand mold and  the  surface 
machined to  the  required  contour.   Pressure orifices on the  forebody were d i s t r i b u t e d  
along 4 rays  ( $  = Oo, 60°, 1 2 0 ° ,  and 180O); t h e   s t a i n l e s s  steel pressure  tubing  had 
an  inside  diameter  of 1.02 mm. I n  general ,   the   surface  coordinates  of these models 
measured to   w i th in  0.1 mm of the  requested  values of x and  y. The su r face   f i n i sh  
f o r  a l l  models was 0 . 8  pm. 

P r i o r  t o  the   f ab r i ca t ion  of these  force  and  pressure models, a pressure  model 
and a hea t - t ransfer  model (see  the  appendix) were fabricated  for  the  hyperboloid  and 
paraboloid  shapes.  These  models were spun  from  type 347 s t a i n l e s s  steel with a d i e  
machined t o  spec i f i ca t ions ,  and the i r   su r f aces   po l i shed  t o  a 0.8 p f in i sh .  The base 
p l a t e  w a s  welded to  t h e   s h e l l   a f t e r   i n s t a l l a t i o n  of the   p ressure  tubes or  thermo- 
couple.wires.  Unfortunately,  the model sur face   coord ina tes  were not  measured a f t e r  
the   base  -plates were welded i n  place. A f t e r   t h e   i n i t i a l  tests i n   t h e  Mach 6 tunnel,  
d i screpancies  were observed  between  shock  shapes  measured  on  the  pressure  and  the 
hea t - t r ans fe r  model  of the  same shape a t  t he  same flaw  conditions.  Subsequent 

'measurements of the  surface  coordinates  of the  models  revealed  deviations from the  
requested  shape by as much a s  2.16. nun. Nevertheless ,   pressure  dis t r ibut ions  and 
shock  shapes are presented   for   these  spun  models,  since  they were the  only  models 
t e s t e d   i n   b o t h   t h e  Mach 6 tunnel  and  the CF4 tunnel. To d i f f e r e n t i a t e  between  these 
models and  the more accura te  machined  models  of the hyperboloid  and  paraboloid 
shapes,   the  spun  models are   designated as  series 1 and  the machined  models as 
series 2. 
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Pressu re   d i s t r ibu t ions   a long   va r ious   r ays  on the  model sur face   a re   p resented   in  
terms of s, the  surface  length from the  geometr ic   s tagnat ion  point  a t  zero i n c i -  
dence,  nondimensionalized by %, the   sur face   l ength   f rom  the ' s tagnat ion   po in t   to   the  
corner.  T h i s  length is given i n  terms of x and  y . by 

! 

:\ 
R 
i 

Thus, f o r  the a n a l y t i c a l  models, 

where 

Model xb, i n .  dy/dx 

1 

1.91 0.7236/p 3 
.955 1.0 233/fi 2 

1.56 (x + 0.5)/{=- 

For the  cone  models  (models 5 t o  8 

where  yb is. equal   to  2 i n .  

Although a closed-form  solution is  poss ib l e   fo r   t he   pa rabo lo id  and  cones 
(models 3 and 5 t o  81, s/% €or  the hyperboloid  (model 1) must  be obtained 
numerically.  Values of s/sb presented  herein were  determined  from  numerical 
integrat ion  (Simpson's   rule)   €or  all models.  Because p r e s s u r e   d i s t r i b u t i o n s   a r e  
sometimes p l o t t e d  i n  t h e   l i t e r a t u r e  as a funct ion of s/rn, va lues  of both % and 
rn are presented: 
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6.5352 (2.5729)  
5.7716 (2.2723)  
7.3442 (2.8914)  

6.5308 (2.5712)  
6.5682 (2.5859 1 

6 .6403  (2 .6143)  

6.6421  (2 .6150)  

1.2700 (0 .5000)  
5.3195 (2 .0943)  
2.6599 (1.0472)  
2.5400 ( 1  . O O O O )  

The equivalent nn-- 
for  the  hyperboloid (model 1) and  the  paraboloid  (model 3) 

." - . ---.*.=u rrom 
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INSTRUMENTATION AND DATA ACQUISITION 

Pressure 

Model surface  pressures  were  measured i n  the Mach 6 tunnel and the CFHT wi th  
variable-capacitance  diaphragm  transducers  having  seven  ranges of pressure,  the maxi- 
mum being 133 kea.  Each f a c i l i t y  had 20 such  transducers  available. The s igna l  f r o m  
a  transducer was recorded on a  magnetic  tape by an  analog-to-digital  recording sys- 
tem. For t e s t s  i n  the Mach 6 tunnel,   the  output  signals from 8 of the 20 pressure 
transducers were displayed on an  oscillograph,  and  data were taken a t   se lec ted   t imes .  
T h i s  i n t e rac t ion  w i t h  the system al lowed  data   acquis i t ion  for   a   s teady-state   f low 
condition  (pt  , , constant w i t h  t ime);   also,   pressure  lag due t o   t h e  
long  length o# tublng  (approximately 3 m )  could  be  observed  and  data  taken  after  the 
pressure became constant.  Each data  point  represented  the  average of 20 samples made 
per  second fo r  each  channel. To reduce  the  response  time of the  pressure  measuring 
system, par t icular ly   for   base  pressure and  afterbody  pressure  measurements,  the 
transducers and reference  manifold  were  subjected  before  the  run  to  a  pressure  that 
was close t o  that  expected on the model surface  during the run. With a  switching 
device  referred  to   as   a   pinch  bar ,  the 20 pressure  transducers  could be used to mea- 
sure i n  excess of 40 surface  pressures  during  a run. Again, t o  improve the  response 
of the  system, the  pinch  bar was hooked up so tha t   p ressure   l eve ls  changed r e l a t i v e l y  
l i t t l e  when the  transducers were switched  from  one  group of 20 or i f i ce s   t o   ano the r .  
I n  the CFHT, each   o r i f i ce  was connected  directly  to  a  pressure  transducer;  hence, two 
runs  were required  for  each model a t  a  given  condition  to  obtain 40 surface  pressure 

Tt, 1 ,  and P t , 2  

. measurements. 

I n  the CF4 tunnel, 42 pressure  transducers were avai lable:  10 variable- 
capacitance  type and 32 strain-gage  type.  Outputs  from  these  pressure  transducers 
were  recorded on magnetic  tape a t  a r a t e  of 400 samples  per  second  for  each  channel. 
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Shock Shapes 

During the  pressure and force  tests i n   t h e  Mach 6 tunnel,  shock shapes were 
measured with a Z-pattern,  single-pass  schlieren  system. A xenon l igh t   source  w a s  
operated i n  a continuous mode during  tunnel  startup. Once steady flaw w a s  obtained 
over  the model, a mirror  w a s  i n se r t ed   i n to   t he   s ch l i e ren  system t o  r e f l e c t  a short- 
dura t ion   l igh t   pu lse  from the lamp i n t o  a camera equipped  with a f a s t  opening  shut- 
ter .   Representative  schlieren  photographs are shown i n   f i g u r e  4 f o r  models 5 
and 8. Shock shapes were not   obtained  in   the CFHT because t h i s   f a c i l i t y  i s  no t  
equipped  with a f law  visual izat ion system. 

Shock shapes were measured i n   t h e  CF4 tunnel  with a dual-plate  holographic 
interferometer  system  (ref.  15) .  Holograms, recorded  using a pulsed  ruby laser t h a t  
provided a 50 mJ p u l s e   f o r  20 nsec, w e r e  used t o  produce  schlieren  photographs  and 
interferograms. 

Forces  and Moments 

Forces and moments were measured i n  the Mach 6 tunnel  and  the CFHT w i t h  the  same 
sting-supported, six-component strain-gage  balance.  This  balance was water cooled 
and shielded from the  f law  to minimize t h e   e f f e c t  of heating  (aerodynamic  heating  and 
conduction  within  the model and s t ing )  on t h e   s t r a i n  gages. The strain-gage  excita- 
t ion  vol tage was 5 volts.  Output  for  the  normal-force,  axial-force,  and  pitching- 
moment components w a s  recorded by the  analog-to-digital  system a t  40 samples per  
second. 

DATA REDUCTION AND UNCERTAINTY 

Pressure 

Measured surface  pressure  distributions  are  nondimensionalized by the  pressure 
a t  the   s tagnat ion   po in t  of the model a t  zero  incidence. The p i t o t   p r e s s u r e  was 
measured €or a l l  tests performed i n   t h e  Mach 6 tunnel  and  the CF4 tunnel. The r a t i o  
of the p i t o t  pressure to  the model s tagnat ion  point   pressure a t  zero  incidence w a s  
computed a s  a correct ion  factor .   For  tests a t  inc idence ,   the   ra t io  of model surface 
pressure to  p i t o t  pressure was mult ipl ied by t h i s   c o r r e c t i o n   f a c t o r ,  which w a s  less 
than 3 percent  from uni ty   for   bo th   the  Mach 6 tunnel   ( ref .  16) and  the CF4 tunnel 
tests. For tests i n   t h e  CFHT, t he   p i to t   p re s su re  w a s  ca lcu la ted  from the   ca l ibra ted  
free-stream Mach number, the  reservoir   pressure,  and correct ion  factors   account ing 
for   imperfec t -gas   e f fec ts   in   the  reservoir. The procedure  for  obtaining nondimen- 
s ional ized  surface  pressures  w a s  the  same excep t   t ha t   t he   ca l cu la t ed   p i to t   p re s su re  
w a s  used  instead of a measured value. 

A t  low dens i t ies ,   the   hea t - t ransfer  rate and o r i f  ice diameter may a f f e c t  pres- 
Sure  measurements ( r e f .  1 7 ) .  This phenomenon, caused by unequal speed d i s t r i b u t i o n s  
for  incoming  and  outgoing  molecules  near  the o r i f i ce   en t r ance ,  i s  evidenced by a 
decrease i n  the measured pressure with a decrease i n   t h e   o r i f i c e  diameter f o r  a given 
densi ty  and heat- t ransfer  rate. For  the  conditions of the  present   s tudy,  orifice 
e f f e c t s  are negl ig ib le  (ref. 17) .  Considering errors r e s u l t i n g  from ca l ib ra t ion  of 
the  pressure  t ransducers ,   t ransducer   uncertaint ies ,  system  response time, outgassing, 
and  thermal creep, the p resen t  pressure measurements are bel ieved  to   be accurate t o  
within 3 percent. Data scatter in   su r f ace   p re s su res  measured on the  models a t  zero 
incidence  indicates   an  overal l   uncer ta inty  of  3 t o  5 percent.  
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PREDICTION  OF FLOW CONDITIONS 

Free-stream conditions  and  conditions  behind  the normal  shock were determined 
f o r  each  run i n   t h e  Mach 6 tunnel  and CF4 tunnel by assuming  an  isentropic  expansion 
of the test  gas  through  the  nozzle.  Reservoir thermodynamic p rope r t i e s  were deter- 
mined from the  measured reservoi r   p ressure  pt, and  temperature Tt 1. For the 
range of test cond i t ions   i n   t he  Mach 6 tunnel, a i r  behaves  ideally. '$he tabulated 
data of reference 18 were c u r v e   f i t t e d   f o r  5.7 < M, < 6.3 to   y ie ld   the   fo l lowing  
express ion   for  M, i n  terms of  measured pt, and 

M, = 8.30067582 - 106.1638176 (?:::) - + 963.5096163 

The corresponding  free-stream  conditions and post-normal-shock condi t ions were 
obtained f r o m  t he   i dea l - a i r   r e l a t ions  and t ab le s  of reference 18. 

Imperfect-gas  (intermolecular-force)  ef  Eects must be  accounted €or a t   t h e  reser- 
voi r   condi t ions  of the  CF4 tunnel   ( re fs .  1 and 9 ) .  Test sec t ion   f law  condi t ions   in  
CF4 were ca lcu la ted  from the  imperfect CF4 expressions of reference 19 and  measured 

tions,  an  isentropic  nozzle  expansion w a s  performed to  a n   i n i t i a l   e s t i m a t e  of the  
free-stream  static  temperature T,. A normal-shock crossing w a s  performed  and a 
value of pt w a s  ca lcu la ted  by assuming the  gas  between  the shock and the  stagna- 
t ion  region Lo be  isentropic.   If   the  calculated  value of p t  ? w a s  not   within 
0 . 0 5  percent  of the  measured  value, T, w a s  i t e r a t e d   u n t i l  t h l s  tolerance was 
achieved. 

values  of P t , l  I Tt , l  and From measured and ca lcu la ted   reservoi r  condi- 

A parameter of i n t e r e s t   f o r   t h e  CF4 tunnel is  the   e f f ec t ive  ra t io  of spec i f i c  
heats.   Ideal-gas  f low  field programs  can accurately predict inviscid  flow  about a 
b lun t  body a t  hypersonic speeds and  high normal-shock dens i ty   ra t ios   p rovided   tha t  
t he   dens i ty   r a t io  i s  accounted f o r  by us ing   an   e f fec t ive   ra t io  of spec i f i c   hea t s  
( r e f .  2 ) .  This   e f fec t ive   va lue  i s  determined  from  the  ideal-gas normal-shock rela- 
t i on   ( r e f .   18 ) ,  

+p_(l-k) p2 

For Mach 6 and 10 a i r ,  yeff - y, = 1.4, and f o r  CF4, yef 1.12. - 

Imperfect-gas  effects mst also be  considered i n  determining  flow  conditions fo r  
the CFHT ( r e f .  20). Because the p i t o t  pressure a t  the test  sec t ion  w a s  not measured 
i n   t h e  CFHT, free-stream Mach number and  Reynolds number f o r  measured reservoir  pres- 
sures  and temperatures were obtained f r o m  a cal ibrat ion  s tudy perEormed p r i o r   t o   t h e  
present   s tudy.   (See  f ig .   7 . )  Along with  these  values  of M, were supplied  correc- 
t i o n   f a c t o r s  ( ra t ios  of imperfect-gas to  ideal-gas   quant i t ies ,  re€. 20 and  f ig .   7 (c) )  
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nozzle   design  condi t ions,   in   ant ic ipat ion of possible  tests of the   p resent  models i n  
the CF4 tunnel. ( A s  discussed  previously,   the CF4 tunnel must  be run a t  nozzle 
design  conditions (pt, = 17.6 MPa, Tt, Z, 81 1 K) t o  avoid a degradation of the  flow 
qual i ty .  A t  nozzle  design  conditions,   the  unit  R e  nolds number immediately  behind a 
normal  shock NRe,2 i s  approximately 6.5 x lo5 m- 's' . ) 

Pressure models were tes ted  over  a range of angle of a t t ack  from Oo to  e i t h e r  
1 6 O  o r  20° i n  increments of 4O.  To obtain a more detai led  c i rcumferent ia l  mapping of 
t he   su r f ace   p re s su re   i n   t he  Mach 6 tunnel,   the models were ro l l ed  30° a t  angles of 
attack of 4O and 8O. This  provided  pressure  distributions  along  rays of I$ = Oo, 
30°, 60°, goo, 120°,  150°, and 180O. Force  models were tes ted  over  a range  of  angle 
of a t tack  from -4O t o  20°. 

I t  should  be  noted t h a t  models t e s t e d   i n   t h e  Mach 6 tunnel a t  the  highest   value 
of r e s e r v o i r   p r e s s u r e   i n   t h e   f i r s t   s e r i e s  of tests were sandblasted. The source of 
t he   so l id  flow  contaminants w a s  a t t r i b u t e d  t o  de te r iora t ion  of an  acoust ical   muff ler  
i n s t a l l e d   i n   t h e  system. A fine  grade of sandpaper w a s  used t o   r e s t o r e  a smooth 
f i n i s h  t o  the model sur face   a f te r   each   run   a t   h igh   reservoi r   p ressure .  These so l id  
contaminants i n   t h e  flow were not  expected to  s igni f icant ly   a f fec t   the   sur face   p res -  
sure  measurements. The f i r s t  model t e s t e d   i n   t h e  CFHT (hyperboloid  pressure model) 
was also  sandblasted  and  the  source of these  solid  flow  contaminants was t raced   to  
r u s t   r e s u l t i n g  from a leak  in  the  water-cooled  nozzle  near  the  throat.  This  situa- 
t ion  w a s  corrected and  models tes ted   thereaf te r   rece ived   l i t t l e   sandblas t ing .  

PREDICTIONS 

The p r e s e n t   r e s u l t s   f o r  models 1, 3, and 5 a t  zero incidence are compared with 
pred ic t ions  from a modified  version of the computer  code presented   in   re fe rence  21. 
The  method  of reference 2 1  rap id ly   ( in   regard   to  computer t i m e )  predicts   ideal-gas  
inviscid  supersonic and  hypersonic  flow  conditions  about  spheres,  ellipsoids,  parabo- 
lo ids ,  and hyperboloids  that may have conical   af terbodies .  An approximation t h a t  
allows an  independent  evaluation of the  pressure  throughout  the shock layer  i s  made 
to  the normal momentum equation.  This  approximation removes many of the  usual mathe- 
mat ical  problems associated  with  subsonic and supersonic  regions. An i t e r a t i v e  tech- 
nique  that   scales   the shock to  the  specif ied body in  the  subsonic and low supersonic 
region of the   f low  f ie ld  i s  used.  Since  the  publication of reference 21, a viscous 
package,  providing  the  capabili ty of predict ing  heat- t ransfer  rates, has  been  added 
t o  the program. A l i s t i n g  of the   o r ig ina l  program  and user   ins t ruc t ions   a re  pre- 
sented  in   reference 21 along  with a detai led  discussion of the  theory.  Pressure 
d i s t r ibu t ions ,   hea t - t r ans fe r   d i s t r ibu t ions ,  and shock shapes  presented  herein and 
designated as being from reference 21 were generated by Ernest  V. Zoby. 

Predic t ions  from two other   f low  f ie ld  computer  programs are compared with mea- 
surement. One is  a time-dependent inviscid  ideal-gas program f o r  axisymmetric  blunt 
bodies.  This program does  not appear i n   t h e  open l i t e r a tu re .   Resu l t s  from it were 
generated by Harris H. Hamilton of the Langley  Research  Center  and are designated 
"unpublished" on the  f igures .  The o ther  code ( r e f .  22) i s  a time-dependent second- 
order-accurate   f ini te-difference method which uses   the  viscous shock layer   equat ions 
i n  body-oriented  coordinates t o  describe  the  f low  field.  The resu l t s   p resented  from 
t h i s  method were generated by e i t h e r  Ajay K u m a r  of the  Langley  Research  Center or 
R. N. Gupta, NRC Senior  Research  Associate. 
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Sur face   p re s su re   d i s t r ibu t ions   fo r  a l l  e i g h t  model shapes w e r e  p red ic ted   wi th  
modified Newtonian theory  ( refs .  23 and 24),   represented by the   express ion   for   the  
pressure c o e f f i c i e n t  

where C i s  the  pressure c o e f f i c i e n t  a t  the   s tagnat ion   po in t   behind  a normal 
shock ans ' sygis   the   angle  of i nc l ina t ion  of the model sur face  t o  t h e   a x i s  of  revolu- 
t i o n  ( 7 = 90° when perpendicular t o  t h e   a x i s  of revolut ion)  . For 5.7 < Mm < 10.2, 
the  value of C f o r  a i r  i s  1.8235 with  an  uncertainty  of 0.5 percent ;   for  

po in t   p re s su re   (p i to t   p re s su re )  i s  given  ( ref .  16) f o r  a i r  by 
CF4 cp, s t a g  fLs%16. Thus, t h e   r a t i o  of sur face   p ressure  t o  model s tagnat ion 

PS 2 p, 

P t ,2  Pt ,2  

" - 0.985 s i n  7 + - 

and f o r  CF4 by 

PS 2 Pm 

Pt,2 P t ,2  

" - 0.978 s i n  q + - 

where leeward 

q = tan - 1 3 -  a 
dx 

and windward 

q = tan + a  
-1 3 

dx (1 Ob) 

Surface  pressures  on the  cone sec t ions  of  models 5 t o  8 a t  incidence were a l s o  
predicted  with  the semiempirical r e s u l t s  of reference 25 and  the  equivalent-cone 
method  of reference 26. 

ReSULTS AND DISCUSSION 

The present  study w a s  performed i n  two series of tests. I n   t h e   f i r s t  series, 
the  hyperboloid  and  paraboloid spun pressure models  and hea t - t ransfer  models (see the  
s e c t i o n   e n t i t l e d  "Models") were tested i n   t h e  Langley  20-Inch Mach 6 Tunnel  and the  
Langley  Hypersonic CF4 Tunnel. Shock shapes  measured on these  models are shown i n  
Eigure  8.  For a few tests, the shock  shape w a s  ob ta ined   i n  two ways: ( 1)  by reading 
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t he  shock detachment  distance from p r i n t s ,  as discussed i n   t h e   s e c t i o n  on data  reduc- 
t ion   (denoted   in   f ig .  8 by open symbols) and (2)  by using  an  enlarger  which displayed 
the  model over  twice i ts  s i z e  on the  surface of a d i g i t i z e r  table. The general 
agreement  between the shock  detachment d is tances  measured with  these two methods 
l ends   c r ed ib i l i t y  t o  the measured  values. The shock shapes  for   the two hyperboloid 
models ag ree   ( f ig .   8 (a ) ) ,  whereas  the  detachment  distance  for  the  pressure  paraboloid 
model exceeds tha t   for   the   hea t - t ransfer   parabolo id  model ( f ig .  8 ( b ) ) .  Differences 
i n   t h e  model shapes  possibly  caused  this  discrepancy. The second set of surface 
coordinate measurements, discussed i n   t h e   s e c t i o n   e n t i t l e d  "Models," revealed  devia- 
t i ons  from the  requested  analytical   shape by as much as  2.16 nun. 

A second series of tests were performed  with more accurate hyperboloid  and 
paraboloid models, along  with two other   analyt ical   configurat ions  and a family of 45O 
cones  having  different  nose  shapes. A l l  the  models t e s t e d   i n   t h e  second series were 
pressure or force  models  and were t e s t e d   i n   t h e  Mach 6 tunnel and the CFHT. Although 
t h e   d a t a   o b t a i n e d   i n   t h e   f i r s t  series correspond to  somewhat i r r e g u l a r  model con- 
tours,  they are presented  nevertheless  because  they  represent the only  comparisons a t  
two densi ty  ratios i n  Mach 6 flow. 1 

Shock Shapes 

Shock shapes  measured on a 10.16-cm-diameter sphere  are shown i n   f i g u r e  9 and 
those measured  on the  hyperboloid  (model  1)  and  paraboloid  (model  3) a t  various 
angles of a t t ack  are shown i n   f i g u r e s  10 and 11. The data  of these  f igures ,   obtained 
i n  Mach 6 a i r  and CF4, i l l u s t r a t e   t h e   e f f e c t  of  normal-shock d e n s i t y   r a t i o  p /pm, or 
e f f e c t i v e   r a t i o  of spec i f i c   hea t s  ye f f ,  on  shock detachment  distance. For t$e 
sphere  ( f ig .  91, the  agreement  between  the shock detachment  distances  for the two air  
tests a t  d i f f e ren t   r e se rvo i r   p re s su res  (Reynolds  numbers) indicates  the  absence of 
viscous  effects   over   the  operat ing  range of r e se rvo i r   p re s su re   i n   t he  Mach 6 
tunnel.   Increasing the densi ty  ra t io  from  5.2 f o r   a i r  to  12.1 f o r  CF4 moves the 
shock c lose r   t o   t he   su r f ace  of the  sphere;   in   the  s tagnat ion  region,   this   increase i n  
density  ratio  decreases  the  detachment  distance by a f a c t o r  of about 2. The shock 
detachment  distances predicted f o r  a i r  and CF4 = 1.123)  with  the method of 
reference 21  agree w e l l  with measurements in   the   sLgnat ion   reg ion  of the  sphere. (Ye f 

Predicted  ( ref .   21)  and  measured  shock shapes a t  a = O o  i n  a i r  and CF4 are i n  
good agreement for   the  hyperboloid  ( f ig .   lO(a)) ;   fa i r   agreement  i s  observed  for  the 
paraboloid  (fig.  11 ( a )  ), with  prediction  underestimating  the shock  detachment dis-  
tance. The shock shapes  over  the  surface of these two a n a l y t i c a l  models a t  a l l  
angles of a t tack  are f r e e  of i n f l ec t ions   i n   bo th  test gases. Density ra t io  has a 
pronounced e f f e c t  on  shock  detachment d is tance   for   these  two models fo r   t he   p re sen t  
range of angle of a t tack .  

The e f f e c t  of angle of a t tack  on  shock shape i n  a i r  and CF4 i s  shown f o r   t h e  
hyperboloid i n   f i g u r e  12 and  the  paraboloid  in   f igure 13. The shock  detachment dis-  
tance  over  the windward (- 1 < y/rb < 0) surface of the  hyperboloid i s  r e l a t i v e l y  
independent of angle  of a t t a c k ,   p a r t i c u l a r l y   i n  CF4 ( f i g .   1 2 ( b ) ) .  The e f f e c t  of 
angle of a t tack  on  shock  detachment dis tance i s  a l s o  small on the windward surface  of 
the  paraboloid ( f ig .  13) i n  both test gases, whereas on the leeward side,  detachment 

'The r e s u l t s  of t h e   f i r s t  series are p resen ted   i n   f i gu res  10 to 13 and 23 t o  30. 
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d i s t ance   s ign i f i can t ly   i nc reases   w i th   i nc reas ing   ang le  of  at tack. The e f f e c t  of the 
flow  expansion  around the corner on the windward shock  shape  occurs  closer to  both 
models a t  the  higher   value of  normal-shock dens i ty  ratio. 

Shock shapes  obtained  in   the Mach 6 tunnel  during the second series of tests are 
shown i n   f i g u r e s  14 t o  20 f o r  a range  of  angle of a t tack .  The shock  shape  over  the 
forebody of the  sonic-corner paraboloid (model 2 )  i s  shown i n   f i g u r e  14, over  the 
paraboloid (model 3) i n   f i g u r e  15, over  the  Viking  aeroshell  (model 4)  i n   f i g u r e  16, 
and  over  the  cone models wi th   d i f f e ren t  nose  shapes  (models 5 t o  8)  i n   f i g u r e s  17 
t o  20. Note t h a t   t h e  cone sec t ion  of the cone  models  remains  fixed i n   t h e  x,y 
coordinate  system as  the nose changes  shape. The p red ic t ed   ( r e f .  21)  and  measured 
shock  detachment dis tance from the more accurate   paraboloid model used i n   t h i s  second 
series agree w e l l  a t  a = O o  ( f ig .   15 (a )  1 .  

An i n f l e c t i o n   i n   t h e  shock  measured over  the  surface of the  spherical-nose cone 
(model 5 )  i s  observed a t  y/rb = f 0 . 6  and a = O o  ( f i g .   1 7 ( a ) ) .   T h i s   i n f l e c t i o n ,  
due to  overexpansion  of  the  flow from the  spherical   nose  to   the cone sect ion,  is  dis- 
cussed in   r e f e rence  27 and i l lustrated  subsequent ly .  Shock shapes  measured  and  pre- 
d i c t e d   ( r e f  s. 21 and 22 and  the  unpublished  time-dependent  blunt-body  program) f o r  
the  spherical-nose cone a t  a = Oo ( f i g .   1 7 ( a ) )  are i n  good agreement. 

The e f f e c t  of  angle of a t tack  on the shock  shape f o r   t h e   f o u r  cone  models is 
shown i n   f i g u r e  21. The i n f l e c t i o n   i n   t h e  shock shapes  on models 5, 6 ,  and 7 
observed a t  the lower angles  of attack  does  not appear a t  the  highest   angle  of a t tack  
on e i t h e r   t h e  windward or leeward  sides. The shock  detachment  distance  near  the  nose 
and i n   t h e   p l a n e  of the  base on the windward s ide  is  re l a t ive ly   i n sens i t i ve   t o   ang le  
of a t t a c k   f o r  a l l  four  cone models. In   f i gu re  22 ,  the  shock shapes  on  the  four cone 
models are compared with one another a t  angles  of a t t ack  of Oo, 4 O ,  and  20°. A s  i n  
f igu res  17 to 21, the cone section of the  models is f i x e d   i n   t h e  x,y coordinate 
system.  Varying  the  nose  shape  from  spherical  has a small inf luence  on the  shock 
shape i n   t h e  nose  region a t  the  lower  angles of a t t a c k   ( f i g s .  22  ( a )  and 22 (b )  1,  b u t  
l i t t l e  e f f e c t  away from the  nose  region.  This is  also the  case a t  a = 200 
( f i g .   2 2 ( c ) )  on the windward side; however, changing  the  nose  from  spherical 
increases   the shock  detachment dis tance on the  leeward  side. 

An embedded shock within  the leeward shock l aye r  w a s  observed f o r   t h e  cusp-nose 
cone  (model 8)  a t   a n g l e s  of attack of 1 6 O  and 20°.  This  embedded shock may be 
observed  from  the  schlieren  photographs of f igu re  4 and w a s  also observed for  the 
flattened-nose cone  (model 6)  and  concave-nose  cone  (model 7)  a t  the  highest   angle of 
a t t ack  (a = 20O) .  This  embedded shock,  which w a s  not  observed  for  the  spherical-nose 
cone  (model 5) a t  angles  of a t t ack  up t o  20°, o r i g i n a t e s  on the  cone s u r f a c e   j u s t  
downstream of the nose-cone junction. 

Pressure 

Comparisons  between a i r  and CF4 r e s u l t s  (series 11.- P res su re   d i s t r ibu t ions  
measured  on the  hyperboloid a t  various  angles of attack  and Reynolds numbers i n  a i r  
and CF4 are shown i n  f i gu res  23 and 26.  The measured p r e s s u r e   d i s t r i b u t i o n   i n   a i r  a t  
a = 00 ( f ig .   23(a)  ) exhibits  an  unexpected  overexpansion of the  flow similar t o   t h a t  
observed  on  spherically  blunted  cones (ref.  27).  A l s o  shown i n   f i g u r e   2 3 ( a )  are the  
pred ic t ions  of references 21 and 22 and  modified  Newtonian  theory. Newtonian theory 
underpredicts  the measured sur face   p ressures  a t  a = Oo, whereas  the  predictions of 
references 21 and 22 are   in   reasonably good (about 6 percent)  agreement  with 
measurement. The surface  pressure ratios p/pt,2 €or  the  hyperboloid  reveal  that  
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the  flaw i s  subsonic  over  the  forebody a t  a = Oo and 4 O  and becomes supersonic  on 
the  leeward  side  for a > 4 O .  ( I f   the   f law  within  the shock l aye r  expands  isen- 
t rop ica l ly  from the  stagnation  region,  the  flow becomes supersonic when 
p/pt,2 < 0.528 f o r  a i r  and p/pt,2 < 0.575 f o r  CF4.)  Newtonian theory 
underpredicts   the windward surface  pressure a t  a l l  angles  of a t t ack ,   bu t  is  i n   f a i r l y  
good agreement  with  measured  leeward  surface  pressures  for a > 12O. An influence  of 
flow  expansion a t  the  corner  is  observed j u s t  upstream of the  corner on the windward 
ray ( I$ = 180°) f o r  a > 12O. Pressures  measured  on a 45O hyperboloid a t  Mach 10, b u t  
a t  a lower Reynolds number than in  the  present  study,  also  exceeded Newtonian theory 
a t  a = Oo ( r e f .  2 8 ) .  It w a s  speculated  in   reference 28 t h a t   a n a l y t i c a l   b o d i e s  
having a sonic   po in t  a t  the  end  of the  forebody  surface would  have experimental 
p r e s s u r e   d i s t r i b u t i o n s   d i f f e r e n t  from  Newtonian theory. The r e s u l t s  of f i gu re  23 f o r  
the most  windward (Q = 180O) and  leeward (I$ = O o )  rays  tend to  suppor t   t h i s  
speculation. The data  of f igu re  24  show t h a t   t h e   f a c t o r  of 17 v a r i a t i o n   i n  Reynolds 
number has no e f f e c t  on surface  pressure on the  hyperboloid a t  a l l  angles  of a t tack .  

A s  i n  air ,  an  overexpansion of the CF4 flow is observed for  the  hyperboloid a t  
a = Oo ( f ig .   25 (a ) ) .   I n   gene ra l ,  Newtonian theory  and  the method of reference 21 
underpredict   the  surface  pressure a t  a = Oo; Newtonian theory  underpredicts  the 
windward surface  pressure,  which corresponds t o  an  inviscid  subsonic shock layer ,  and 
a g r e e s   f a i r l y  w e l l  with measurement  on the  leeward  side  for a > 8 O .  The CF r e s u l t s  
for  the  hyperboloid are compared with  the a i r  r e s u l t s  a t  N R ~ , ~ , ~ ~  = 0.2 x 10 i n  
f igu re  26. In  general ,   the  pressure ratios f o r   t h e  CF4, with a d e n s i t y   r a t i o  approx- 
imately twice t h a t  of a i r ,  are less than  those  for  air .   This  trend of a lower  sur- 
f a c e   p r e s s u r e   r a t i o   f o r  CF4 is a lso   p red ic ted  by the method of reference 21 a t  
a = Oo ( f i g .   2 6 ( a ) ) .  The d i f fe rence  between  measured su r face   p re s su re   r a t io s   fo r  
the  two gases   increases   with  increasing  angle  of a t tack  and i s  about 30 percent  on 
the  leeward  side a t  a = 20°. Unlike a i r ,  the  flaw  over  the  forebody of the hyper- 
b o l o i d   i n  CF4  may be both  subsonic  and  supersonic a t  a = Oo. A l s o ,  the  CF4 pressure 
d i s t r i b u t i o n s  on the most windward ray do not  exhibit   an  upstream  influence of the 
flaw  expansion a t  the  corner, as do the a i r  r e s u l t s   f o r  a > 12O. 

46 

Pressure   d i s t r ibu t ions   for   the   parabolo id  (model 3)  are Shawn i n   f i g u r e s  27 
t o  30 for   var ious  angles  of a t t ack ,  Reynolds numbers,  and test gases. A t  a = O o  
i n  a i r  ( f ig .   27 (a ) ) ,   t he   p red ic t ions  of reference 21 and  Newtonian theory  agree 
reasonably w e l l  (6 to  7 percent) with measurement. AS observed for  the  hyperboloid,  
Newtonian theory  tends  to  underpredict  the windward surface  pressure a t  angles of 
a t tack ,   bu t  i s  i n  good agreement  with  the  leeward  pressure  distribution.  This i s  
a l s o  observed i n  CF4 ( f ig .   29 ) .  The windward  shock layer  flow becomes subsonic  along 
t h e   e n t i r e  Q = 180° r a y   f o r  a > 12O i n   a i r  and a > 16O i n  CF4. A s  expected, 
there  i s  no  s i g n i f i c a n t   e f f e c t  of  Reynolds number on the  surface  pressure 
d i s t r i b u t i o n   f o r   t h i s   r e l a t i v e l y   b l u n t  body i n  Mach 6 a i r  ( f i g .  2 8 ) .  The method of 
reference 21 p r e d i c t s   a n   e f f e c t  of d e n s i t y   r a t i o  on sur face   p ressure  a t  a = Oo 
( f i g .  30 ( a )  ) . Although  an e f f e c t  of densi ty  ra t io  on the  leeward  surface  pressure 
d is t r ibu t ion   for   the   parabolo id  may ex i s t  ( f i g .  301, it is  not as s i g n i f i c a n t   a s   t h a t  
observed i n   f i g u r e  26 for  the  hyperboloid. 

Mach 6 a i r   r e s u l t s  (series 21.- P re s su re   d i s t r ibu t ions  on the  sonic-corner 
paraboloid (model 2 )  i n  Mach 5.9 a i r  are shown i n   f i g u r e  31 a t   v a r i o u s   a n g l e s  of 
a t tack .  The p res su re   d i s t r ibu t ion  on the  forebody i s  predic ted   qu i te  w e l l  by 
Newtonian theory  for a l l  angles  of a t tack.  The p res su re   d i s t r ibu t ions  of f igu re  31 
i l lus t ra te   the   rap id   expans ion  of the  flow  around  the corner. Except a t  a = 8O, 
the   p ressures  on the windward (6 = 180° ) and  leeward ( I$ = Oo ) r ays  of the  afterbody 
are re la t ive ly   cons tan t   wi th  S/Sb# are es sen t i a l ly   t he  same value,  and do not  change 
appreciably  with  increasing  angle of a t tack .  The afterbody  pressure i s  close to  the 
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free-stream  static  pressure.  The reason  that   the   af terbody  pressure  dis t r ibut ions 
along @ = 0" and 180° a r e   d i f f e r e n t   a t  a = 8 O  from those of the  other  rays 
( f i g .   3 1 ( c ) )  i s  unknown. 

Pressure  dis t r ibut ions on the more accurate (series 2) paraboloid (model 3)   a re  
shown i n  f igure  32 €or Mach 5.9 a i r .  The sur face   p ressure   ra t ios   for  t h i s  
model a r e  somewhat lower  than  values measured on the model t e s t ed  i n  t h e   f i r s t  series 
and a r e  i n  good agreement  with  prediction  (ref. 21 and  Newtonian  theory) a t  a = Oo. 
Newtonian  theory predic t s   the  windward and  leeward pressure   d i s t r ibu t ions   qu i te  well 
a t   a l l   a n g l e s  of a t tack.  

Figure 33 shaws measured pressure   d i s t r ibu t ions  on the  Viking  aeroshell  
(model 4 )  i n  Mach 5.9 a i r .  As w i t h  the  sonic-corner  paraboloid  (fig. 3 1 ) ,  the  flow 
expands  rapidly  around  the  corner and the  pressure becomes nearly  constant  over  the 
afterbody  surface. The af terbody  pressure  ra t io  is  about  the same a t   a l l   a n g l e s  of 
a t tack  and i s  slightly  higher  than the  f ree-s t ream  s ta t ic   pressure.  

Measured pressure  distributions  for  the  cones  (models 5 t o   8 )  i n  Mach 5.9 a i r  
a re   shmn i n  f igures  34 t o  37 a t  various  angles of a t tack.  The predict ions of refer-  
ences 21 and 22, the  unpublished  time-dependent  blunt-body  program,  and Newtonian 
theory  are compared w i t h  measurement i n  figure  34(a)  for  the  spherical-nose cone a t  
a = 00; a l so  shown f o r  I s/sbl > 0.3 a re   p red ic t ions  from the cone theories  of ref-  
erences 25 and 26.  The predict ions of reference 22 and the  unpublished program agree 
with measurement; the  prediction of reference 21 agrees  with measurement on the 
spherical   sect ion and a f t   p o r t i o n  of the cone sect ion,   but   underpredicts   the over- 
expansion of the  flaw from the  spherical  nose by about 10 percent. The flow a t   t h e  
surface of t h i s  cone a t  a = Oo becomes supersonic on the  spherical   sect ion j u s t  
upstream of the  sphere-cone  junction and, a s  observed i n  f i g u r e   3 4 ( a ) ,  becomes sub- 
sonic on the  rear of the cone section. The theories  of references 25 and 26 ,  n a t u r  
a l l y ,  do not  predict   the  overexpansion  for  the  present cone  models.  Newtonian theory 
predicts   the  surface  pressure  dis t r ibut ion on the  spherical  nose,  but  underpredicts 
the  pressure on the cone section. The theory of High and  Blick  (ref. 26) p red ic t s  
the  asymptotic cone pressure  quite  well ,  whereas  the  semiempirical method of Amick 
( r e f .  25) overpredicts t h i s  pressure. The method  of reference 25  was included h e r e i n  
because of i ts  success when appl ied  to   larger  cone angles and  higher Mach numbers 
than  those from  which the  semiempirical  relations were der ived  ( ref .   29) .  For a l l  
four cone  models ( f ig s .  34 t o  371, Newtonian theory  underpredicts  the cone surface 
pressure on the windward s i d e   a t   a l l   a n g l e s  of a t tack ,  and agrees  reasonably  well 
w i t h  measured  leeward-side  pressures a t  the  higher  angles of a t tack  ( a  > 1 2 O  1 .  A s  
for  the  spherical-nose  cone, Newtonian theory  accurately  predicts  the  pressure  dis-  
t r ibu t ion  on the  f la t tened nose of model 6 ( f ig .   35) ;  however, i t  does  not  predict  
the  pressure  dis t r ibut ions on the  concave  and  cusp  noses of models  7  and  8 ( f i g s .  36 
and 37). 

The e f f e c t  of nose  shape of the  cones on the  pressure  dis t r ibut ion i n  Mach 5.9 
a i r  is shown i n  f igure 38 a t  several   angles of a t tack .  The data of f igure  38 cor- 
respond t o  the  most  windward ( @  = 180" ) and leeward ( Q = 0" ) rays. The nose  shape 
does  not  influence  the windward or  the  leeward  pressure  distribution on the cone 
sec t ion   for  0" < a < 16"; a t  a = 2O0, some e f f e c t  of the  nose  shape is  apparent on 
the  leeward  pressures  close  to  the nose-cone junction.  For all four nose  shapes,  an 
overexpansion of the  flow from the  nose  to  the cone sect ion i s  observed on the wind- 
ward s i d e   a t   t h e  lower angles of a t tack ( a  < 12O ); t h i s  overexpansion  also  occurs on 
the  leeward  s ide  for   a l l   angles  of a t tack.  The pressure   d i s t r ibu t ions  on the  nose of 
the  flattened-nose cone  (model 6 )  and  concave-nose  cone  (model 7 )  are  approximately 
the same a t  t he  lower angles of a t tack,   but   depart  from  one another on the  leeward 
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s ide   a t   the   h igher   angles  of a t tack.  The pressure  dis t r ibut ion on the  cusp-nose cone 
i s  indicat ive of flow  separation and reattachment. The shock generated by reattach- 
ment was observed i n  the  schlieren  photographs  (fig. 4). 

The e f f e c t  of angle of a t tack on measured windward and  leeward p res su re   d i s t r i -  
butions  for  the  four cone  models i n  Mach 5.9 a i r  i s  shown i n  f igure  39. The over- 
expansion on the windward side of the  spherical-nose cone ( f ig .   39(a) )   occurs   for  
e f f ec t ive  cone angles ( 8  + a )  l e s s  than  or  equal  to 57O. Note that  increasing  the 
cone half-angle beyond the  detachment  angle, which is  about 55O f o r  Mach 6 a i r ,  
causes  the bow  wave over  the  conical  portion of a  sphere  cone t o  change  from conical 
to   spherical ,  and the  flow  changes from supersonic  to  completely  subsonic  along  the 
cone ( r e f .  3 0 ) .  For a > 12O, the  windward sur face   p ressure   for   a l l   four  cone  models 
decreases  as  the flow  approaches  the  base. 

Circumferential   pressure  distributions on the cone section of the  spherical-nose 
cone i n  Mach 5.9 a i r   a r e  shown i n  f igure 40 a t  various  angles of a t tack.  These dis- 
tr ibutions  correspond  to  s/sb = f0.88. Predicted  dis t r ibut ions from  Newtonian 
theory and the methods of references 25 and 26 a re  compared with measurement. A t  t he  
lower angles of attack,  the method of High and Blick  (ref. 26) provides  the most 
accurate  prediction of the measured pressures,  whereas  Newtonian theory i s  more 
accurate   a t   the   higher   angles  of attack. 

Mach 10 a i r   r e s u l t s   ( s e r i e s  21.- Pressure  dis t r ibut ions measured on the hyperbo- 
lo id  (model 11, the  sonic-corner  paraboloid (model 21, the  paraboloid (model 31, t he  
Viking  aeroshell (model 41, and the  four  cones  (models 5 t o  8 )  i n  the Langley 
Continuous-Flow  Hypersonic  Tunnel i n  Mach 10 a i r   a r e  shown i n  f igures  41 t o  48. The 
angle of a t tack was varied from O o  t o  1 6 O  i n  4 O  increments  for  these Mach 10 t e s t s .  
I n  f igure 41 ( a )  , the   pressure  dis t r ibut ion on the more accura te   ( se r ies  2) hyperbo- 
lo id  i s  f r e e  of an  overexpansion a t  a = O o .  Unfortunately,  this  hyperboloid model 
was not  tested i n  the Mach 6 tunnel; however, the   resu l t s  of f igure  41(a) c a s t  doubt 
on the  val idi ty  of the  overexpansion  observed a t  Mach 6 ( f i g .   2 3 ( a ) )  on the  less- 
accura te   ( se r ies  1) hyperboloid model. A t  a = O o  ( f i g .  41(a)), the measured  sur- 
face  pressure i s  predicted  quite  well  by the method  of reference 21. A s  observed 
previously  for Mach 6 a i r ,  Newtonian theory  underpredicts  the windward pressure  dis- 
tribution  for  the  hyperboloid,  but  agreement between  Newtonian theory and measurement 
improves on the  leeward  side w i t h  increasing  angle of a t tack.  

The pressure   ra t io  on the  afterbody of the  sonic-corner  paraboloid  (fig. 42) i s  
relat ively  constant   as   angle  of a t tack  var ies  from Oo t o  16O. The pressure on the 
afterbody is  about 1.75 t o  2.5 t imes  that  of the  free-stream  static  pressure.  A s  
observed i n  f igure  3 1 , the  afterbody  pressure was nearly  the same as   the f ree-stream 
s t a t i c   p r e s s u r e   a t  Mach 5.9. Hence, Mach  number affects  the  afterbody  pressure.  
Whereas the  afterbody  pressure was re la t ive ly   cons tan t  w i t h  s /sb  for  Mach 5.9 a i r  
( f i g .  31) , t he  afterbody  pressure a t  Mach 10 increases  with I S/sbl i n  the  direct ion 
of the  sting. 

The methods of references 21 and 22 accurately  predict   the measured pressure 
d is t r ibu t ion   for   the   parabolo id   a t  a = Oo ( f ig .   43 (a )  1 .  As observed a t  Mach 5.9 
( f i g .  321, the measured pressure  dis t r ibut ions  for   the  paraboloid  are   predicted  qui te  
well by Newtonian theory a t  Mach 10 ( f i g .  43)  for  the  present  range of angle of 
a t tack.  I n  f igure  44, t h e  afterbody  pressure on the  Viking  aeroshell i s  e s sen t i a l ly  
constant  with s/% and is  the same  on the windward and leeward  rays ((I = 180° 
and Oo) a t  a < 12O. This was also  the  case  for Mach 5.9 a i r   ( f i g .   3 3 ) .  However, 
the  afterbody  pressure i s  about twice the  free-stream  static  pressure a t  Mach 10, 
whereas it was approximately  equal  to  the  free-stream  pressure a t  Mach 5.9. 
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The e f f e c t  of free-stream Reynolds number on the   p ressure   d i s t r ibu t ion  on the 
hyperboloid,  paraboloid,  Viking  aeroshell, and four cone  models i s  shown i n  f ig-  
u re s  49 t o  55 a t  a = Oo and 16O. A s  expected,  Reynolds number does  not   affect   the  
forebody  pressure  distributions on these  re la t ively  blunt   bodies .  However, Reynolds 
number does  influence  afterbody  pressure on the  Viking  aeroshell   (f ig.  5 1 ) , the  pres- 
s u r e  decreasing  with  increasing Reynolds number a t  these two angles of attack.  This 
trend is  cha rac t e r i s t i c  of the Reynolds number e f f e c t  on base  pressure  observed  for 
laminar  flow  (ref. 3 1) . Surface  pressures measured a t  Mach  10 on the  hyperboloid 
( f i g .  49) agree  qui te  w e l l  with  those measured on the  hyperboloid  tested i n  refer- 
ence  28,  which had the same equivalent nose  radius. 

Pressure   d i s t r ibu t ions   i l lus t ra t ing   the   e f fec t  of nose  shape of the cone models 
a t  Mach 10 a r e  s h m n  i n  f igure  56 a t  various  angles of a t tack.  A s  expected,  these 
resul ts   are   near ly   the same as  those  observed a t  Mach 5.9 ( f ig .   38 ) .  The e f f e c t  of 
Mach number  on the  pressure  dis t r ibut ions on the  spherical-nose cone i s  sham i n  
f igure  57 a t  a = O o  and 1 6 O .  Again, as  expected  (refs.  23 and 2 4 )  , no e f f e c t  of 
Mach number i s  apparent. 

Forces and Moments 

Aerodynamic coefficients  (normal,   axial ,  and p i tch ing  moment) a r e  shown a s  a 
function of angle of a t tack i n  f igure 58 for  the  hyperboloid (model 11, paraboloid 
(model 3 ) ,  and spherical-nose cone  (model 5 )  i n  Mach 10 a i r .  Also shown i n  f igure 58 
a re   p red ic ted   ( re f .  32) aerodynamic coefficients  based on Newtonian  theory, where the 
maximum pressure  coeff ic ient  i s  assumed to  equal 2 , f o r  the  spherical-nose cone 
(model 5 ) .  The normal-force  coefficients  for  the  paraboloid and  cone  match  each 
other   c losely up t o  a = 1 6 O ,  whereas % for  the  hyperboloid i s  somewhat less   than 
tha t   for   the   o ther  two models a t  a  given  angle of a t tack.  The geometric  similarity 
of the  hyperboloid  and cone i s  i l l u s t r a t e d  by the  var ia t ion of axial-force  coeffi-  
c i e n t  CA ( f i g .   5 8 ( b ) ) ,  w i t h  CA for  the  paraboloid  being much l e s s   t han   t ha t   fo r  
the  other two configurations. The pitching-moment coe f f i c i en t s  Cm f o r   a l l   t h r e e  
models agree up t o  a = 8O. A t  the  highest  angle of a t tack ( a  = 2 0 ° )  , the   pi tching 
moments for  the  paraboloid and  cone a re  i n  good agreement and tha t   fo r   t he  hyperbo- 
lo id  i s  higher  than  for  the  other two models.  Newtonian theory  for  the cone 
( r e f .  32)  underpredicts C& a t  a > 4 O  , underpredicts CA a t  a < 1 6 O  , and pre- 
d i c t s  Cm w i t h  f a i r  accuracy. 

Aerodynamic coef f ic ien ts  measured on the  four cone  models i n  the Mach 6 tunnel 
and the CFHT a re  compared i n  f igures  59 to  62. The aerodynamic coef f ic ien ts  measured 
i n  these two f a c i l i t i e s   a r e   e s s e n t i a l l y   t h e  same for  the  present  range of angle of 
a t tack ;   tha t  is, no e f f e c t  of Mach  number or  Reynolds number  on the aerodynamic  coef- 
f i c i e n t s  i s  observed.  Normal-force and pitching-moment coe f f i c i en t s  measured on a 
45O spherically  blunted cone (rn/rb = 0.5)  i n  reference 33 agree  with  the  present 
r e su l t s ,  whereas  the  axial-force  coefficients measured i n  reference 33 are  about 4 t o  
5 percent  lower. ( A s  i n  the  present  study, no correction  for  the  base  pressure was 
appl ied  to   the  resul ts  of ref .  33. Base pressures measured on the  spherical-nose 
cone i n  Mach 5.9 a i r  i n  the  present  study were approximately  equal  to  the  free-stream 
s t a t i c   p re s su re   fo r  Oo < a < 20° . I  

The e f f e c t  of nose  shape of the  cones on aerodynamic coe f f i c i en t s  i s  shown i n  
f igure  63 f o r  Mach 10 a i r .  Normal-force  and  pitching-moment coe f f i c i en t s  
( f ig s .   63 (a )  and 63 (c ) )   a r e   t he  same for   the   f la t tened ,  concave,  and  cusp  nose  shapes 
( the  normal-force coeff ic ient   for   these  three  shapes i s  s l igh t ly   l e s s   t han   t ha t   fo r  
the  spherical-nose cone a t  the  highest  angle of a t tack   ( f ig .   63(a)  1. There may be  a 
-11 decrease i n  axial   force  as   the nose  shape i s  changed  from  a sphere,  but t h i s  
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change is within  the  experimental  uncertainty. The drag and l i f t   c o e f f i c i e n t s  and 
l if t-drag  ratios  for  the  hyperboloid and  cone  models a r e  shown i n  f igure  64 f o r  
Mach 5.9-and 10.1 a i r .  The- Reynolds number 
numbers. NRe, w,% 

i s  the same for   the  two Mach 

CONCLUSIONS 

Pressure  dis t r ibut ions,  aerodynamic coef f ic ien ts ,  and  shock  shapes were  measured 
on blunt  bodies of revolution i n  hypersonic  flaw a t  angles of a t tack from Oo t o  20° 
i n  4 O  increments.  Configurations  tested were  a hyperboloid  with  an  asymptotic  angle 
of 45O, a sonic-corner  paraboloid, a paraboloid  with  an  angle of 27.6O a t  the  base, a 
Viking  aeroshell  generated i n  a generalized  orthogonal  coordinate  system, and  a 
family of 45O half-angle  cones  having  spherical,  flattened,  concave, and cusp  nose 
shapes.  Real-gas e f f e c t s  were simulated  for  the  hyperboloid and paraboloid by t e s t -  
ing  these models a t  Mach 6 i n  a i r  and CF4. The normal-shock dens i ty   r a t io  was 5.3 
f o r   a i r  and 12 f o r  CF4. Tests  were a l so  performed i n  Mach 10  a i r .   Pred ic t ions  from 
Newtonian  theory,  simple  theories, and  numerical  flaw f i e l d  programs a r e  compared 
with measurement. The results of t h i s  study  led  to  the  following  conclusions: 

1. A pronounced e f f e c t  of dens i ty   r a t io  on shock shape was observed  for a sphere 
and for  the  hyperboloid and paraboloid, the  shock detachment distance  decreasing  with 
increasing dens i ty  ra t io .  The detachment distance on the windward s ide of the  hyper- 
boloid was relatively  independent of angle of a t tack up t o  20°. Shock shapes  for  the 
sphere and hyperboloid a t  zero  incidence i n  Mach 6 a i r  and CF4 were predicted  rea- 
sonably  well by the  ideal-gas method of Zoby and Graves (NASA TM X-2843, ref .  2 1 )  
where an  effective  value of t he   r a t io  of spec i f ic   hea ts   for  CF4 was i n p u t   t o   t h i s  
method. A n  embedded shock w i t h i n  the bow shock layer  on the  leeward  side was 
observed for   the  45O cone  models  having f la t tened,  concave, and cusp  nose  shapes a t  
an angle of a t tack of 2 0 ° ,  but was not  observed  €or  the  spherical-nose cone. 

2.  Surface  pressure  ra t ios  on the most windward ray and especially  the most 
leeward  ray of the  hyperboloid  decreased w i t h  increasing  densi ty   ra t io;  t h i s  e f f e c t  
OE densi ty   ra t io   increases   with  increasing  angle  of a t tack.  A smaller   effect  of 
dens i ty   ra t io  on surface  pressure was observed for  the  paraboloid. The decrease of 
surface  pressure  ra t io   with  increasing  densi ty   ra t io   for   these two ana ly t i ca l  models 
a t  zero  incidence was predicted by the Zoby-Graves method. 

3 .  The forebody  pressure  distribution on a l l  models was independent oE Mach 
number between 6 and 10 and  of  Reynolds number, which was varied by a fac tor  of  17 a t  
Mach 6. However, the  af  terbody  pressure on the  Viking  aeroshell  increased  with 
increasing Mach  number and decreasing Reynolds number. A t  Mach 6, the  afterbody 
pressures  on the most  windward  and leeward  rays of the  sonic-corner  paraboloid  and 
Viking  aeroshell were  approximately  equal t o   t he   f r ee - s t r eam  s t a t i c   p re s su re   a t   a l l  
angles of a t tack.  

4. The method of Zoby and  Graves and the method of  Kumar and  Graves  (AIM  Paper 
No. 77-172, re f .  2 2 )  accurately  predicted  the measured pressure   d i s t r ibu t ions  on the 
hyperboloid  and  paraboloid i n  Mach 6 and Mach 10 a i r .  For  the 45O spherical-nose 
cone, the Zoby-Graves method underpredicted  the  surface  pressure  just downstream  of 
the  sphere-cone  junction. The surface  pressure  dis t r ibut ion on t h i s  cone a t  zero 
incidence i n  Mach 6 a i r  was accurately  predicted by an  unpublished  time-dependent 
blunt-body  program of Harr is  H. Hamilton of the  Langley  Research Center  and by the 
Kumar-Graves method. The windward  and leeward  pressures on the  paraboloid were 
accurately  predicted by Newtonian  theory for  the  present  range of angle of a t t ack ,   a s  
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was the  leeward  pressure on the  hyperboloid a t   t he   h ighe r   ang le s  of a t tack.  
Newtonian  theory underpredicts  the  pressure on the windward s ide of the  hyperboloid, 
which  does  not  have  a  natural  sonic  point on the  surface. 

5. Changing  nose  shape of the 45O cones  from  spherical   to  f lattened, concave, o r  
cusp d id  not  appreciably  affect   the  aerodynamic  coefficients i n  Mach 10 a i r .  The 450 
hyperboloid, which geometrically  resembles  the 45O spherical-nose  cone,  has  a 
s l i gh t ly   sna l l e r  normal-f orce  coefficient,   about  the same axial-f   orce  coefficient,  
and a   s l i gh t ly   l a rge r  pitching-moment  coefficient  than  does  the 45O cone.  Newtonian 
theory  for  the  spherical-nose  cone  underpredicted  the normal-  and axial-force  coef- 
f i c i e n t s  and predicted  the  pitching-moment  coefficient  reasonably  well. 

Langley  Research  Center 
National  Aeronautics and Space  Administration 
Hampton, VA 23665 
June 22, 6982 

24 



APPENDIX 

MEASURED  HEAT-TRANSFER  DISTRIBUTIONS ON HYPERBOLOID AND PARABOLOID 

Convective  heat-transfer rates were measured  on the  hyperboloid (model 1)  and 
the paraboloid (model 3 )   i n  the Langley 20-Inch Mach 6  Tunnel. The convective  heat- 
t r a n s f e r  rate t o   t h e  model surface w a s  obtained by us ing   the   t rans ien t   ca lor imet ry  
technique to  measure the rate of hea t   s torage   in   the  model skin.  These hea t - t ransfer  
models w e r e  spun  from  type 347 s t a i n l e s s  steel and  had a w a l l  th ickness  of  0.61 mm to  
0.76 mm. Chromel-alumel thermocouples  (30-gage w i r e ,  0.25 mm in   diameter)  were 
welded t o  the   ins ide   sur face  of the   she l l ;  44 thermocouples were d is t r ibu ted   a long  
5 rays. 

The  models, o r ig ina l ly  a t  or below room temperature, were suddenly  exposed to  
steady-state a i r  flow by quick  inject ion from a she l te red   pos i t ion  below the   f loor   o f  
the  tunnel test sec t ion .   In jec t ion  w a s  accomplished i n  0.5 t o  0.55  second, as   de te r -  
mined from a 3-posit ion  switch  attached to  the   in jec t ion  mechanism, and the model 
remained i n   t h e  flow f o r  approximately  5  seconds  before  being  retracted. The output 
s igna l  from each  thermocouple w a s  recorded by the  analog-to-digital  system a t  20 sam- 
ples per second. After  a test, the  angle of a t tack w a s  changed  and the model  was 
cooled by a j e t  of a i r .  The  model thermocouple outputs  were scanned  before  the  next 
tes t  t o   v e r i f y   t h a t   t h e  model s h e l l  had returned  to  an  isothermal state. 

The data  reduction  procedure  used  for  these  continuous  thin-skin models i s  dis-  
cussed i n   d e t a i l   i n   r e f e r e n c e  34. Because of the   d i f fe rence   in   sur face  area between 
the  inner  and o u t e r  surfaces  of the  thin-skin model ( r e f s .  35 and  361, a geometric 
co r rec t ion   f ac to r  w must  be  applied t o  the measured skin  thickness T,,,. The prod- 
u c t  T ~ W ,  re fer red   to   as   the   e f fec t ive   sk in   th ickness  z ~ ~ ~ ,  is  defined as  the ra t io  
of  the volume  of the  skin  element to  the  area of the  skin  element  subjected  to  aero- 
dynamic heating. The curvature cor rec t ion   fac tor  i s  given in   r e f e rence  35 as 

L) 2 r  

where 

q = t an  
-1 * 

dx 

and 

r 
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Values of w a t  the  thermocouple  locations  for  the two hea t - t ransfer  models a re  

Hyperboloid  (model 1) Paraboloid  (model 3) 

s/ Sb 

0 
.046 
.O 965 
.2075 
.324 
.4555 
.584 
.7215 
.849 
.91a5 

W 

0.945 
.951 
.961 
.978 
,985 
.989 
.992 
.993 
.994 
.995 

s/ Sb 

0 
.046 
.089 
.183 
.280 
.390 
.517 
.650 
.807 
.891 

.988 

.992 

Heat- t ransfer   dis t r ibut ions measured on the  hyperboloid  and  paraboloid models 
are  nondimensionalized by the  predicted  ( ref .  37) value of heat  transfer  to  the  stag- 
nat ion  point  of a  sphere. The sphere  radius i s  equal   to   the  equivalent  nose radius 
of the model (see  sect ion  ent i t led  "Models") .  The value of wall  temperature  required 
i n  the  prediction of the  s tagnat ion  point   heat- t ransfer   ra te  was selected  to   force 
asreement  between  the  measured  heat-transfer  rate a t  the  nose ( s  = 0) of the model a t  - 
zero  incidence and the  predicted  heat- t ransfer   ra te   to  a  sphere  ( that  is, 
a t  s/sb = 0 and a = 00). The resul t ing  value of T , / T ~ , ~  was used t o  
p red ic t  p f o r   t e s t s   a t  a > Oo . The values of Tw/Tt,2 used f o r  the 
reservoir   pressures  i n  the Mach 6 tunnel  are SPh 

. ~ ~~~ " . ~ 
~~ - .~ 

T J T ~ , ~  f o r  - 
Nominal MPa 

Paraboloid  (model 3) Hyperboloid  (model 1) 
~ " 

~ ~~~ "~ "" ~~ . . ~ _ _ ~  ~ 

0.16 

.323 .325  3.41 

.262 .258 .70 
0.158 0.1805 

- 

three 

Heat-transfer  distributions  for  the  hyperboloid i n  Mach 6 a i r   a r e  shown i n  f ig-  
ure 65 a t  various  angles of a t tack and the  highest  value of free-stream  Reynolds 
number. Also sham i n  f igure  6 5 ( a )  are   hea t ing   d i s t r ibu t ions   p red ic ted  w i t h  the 
methods of references 21 and 22 a t  a = Oo. These predictions  agree  reasonably  well  
w i t h  measurement,  except  along @ = 180O. The increase i n  heat-transfer  rate  occur- 
ring  around  s/sb = -0.5 on th i s   r ay  i s  a t t r i bu ted  t o  t r a n s i t i o n  of the boundary 
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l a y e r  from laminar t o  turbulent  f law due to  surface  roughness.  (Although  the  surface 
of t h i s  model w a s  pol ished prior to  any t e s t ing ,  i t  became  somewhat rough during  the 
tests because of sandblast ing by sol id   contaminants   in  the flow. ) Trans i t ion  w a s  
also  observed a t  a = 4 O  ( f i g .  65 (b)  ) and may have occurred a t  a = 8 O  

( f i g .   6 5 ( c ) ) .  Near the base,  the  windward-surface  heating rate increases  only  about 
30 percent  as angle of a t t ack  i s  increased from O o  to  20°, whereas  the leeward heat- 
i n g  rate decreases by a f a c t o r  of  2.5 or so. The c i rcumferent ia l   hea t ing   d i s t r i -  
but ions imply that   the   f low remained at tached on the leeward s ide  as  the  angle of 
a t t ack  w a s  increased to  200 ( t h a t  is, no  minima in   t he   c i r cumfe ren t i a l   hea t ing   d i s -  
t r i bu t ions  were observed. ) 

The e f f e c t  of free-stream  Reynolds number on the   hea t - t r ans fe r   d i s t r ibu t ion   fo r  
the  hyperboloid i s  shown i n  f igu re  66 f o r  a = Oo. The heat- t ransfer   ra te   tends t o  
increase   wi th   increas ing  Reynolds number in   t he   r eg ion   j u s t  downstream  of the model 
Stagnation  point,   but is  essentially  independent of  Reynolds number for   s / sb  > 0.4 .  
(Because  the  sandblasting  effect  worsens  with  increasing  reservoir  pressure  (Reynolds 
number) and t h i s   e f f e c t  i s  expected to increase  the  heat ing rate on the model surface 
( r e f .  381, no definite  conclusion  concerning  the increase in   hea t ing   wi th   increas ing  
Reynolds number i s  made.) 

Heat - t ransfer   d i s t r ibu t ions   for   the   parabolo id   in  Mach 6 a i r  are shown i n   f i g -  
ure 67 a t  various  angles of attack.  Like  the  hyperboloid  data  in  f igure 65, these 
data  correspond to  the  highest   value of free-stream  Reynolds number. Unlike  the  data 
for  the  hyperboloid, no evidence of boundary l aye r   t ans i t i on  i s  observed  for  the 
paraboloid. The methods  of references 21 and 22 overpredict   the   heat ing rate i n  the  
nose region a t  a = Oo ( f i g .   6 7 ( a )  1; the   p red ic t ion  of reference 21 agrees   with 
measurement to   w i th in  15 pe rcen t   fo r  I s/sb] > 0.5.  The circumferent ia l   heat ing 
d is t r ibu t ion   g ives  no evidence of leeward flow separat ion a t  the  higher  angles  of 
a t tack .  The r e s u l t s  of f i gu re  68 i l lus t ra te   the   absence  of a Reynolds number e f f e c t  
on the  heating a t  a = 0 O . 
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I 
Reclaimer I 

(a)  Langley  Hypersonic CF4 Tunnel [taken from ref. 9) . 
Figure 1 .- Schematics of wind tunnels  used i n  the  present  study. 
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(b) Langley 20-Inch Mach 6 Tunnel (taken  from ref. IO). 

Figure 1 .- Continued. 



( c )  Langley  Continuous-Flow  Hypersonic  Tunnel  (taken  from.ref. 3 4 ) .  

Figure 1 .- Concluded. 
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( a )  Hyperboloid  (model 1 ) .  

>4 27.6' 

(b) Sonic-corner  paraboloid (model 2 ) .  

(c) Paraboloid (model 3). ( d l  Viking  aeroshell (model 4). 

Figure 2.- Planform  views of configurations  tested.  
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( e )  45O cone with  spherical 
nose (model 5 ) .  

( f )  45O cone with  flattened 
nose (model 6 ) .  

(9) 45O cone with concave nose (model 7 ) .  (h) 45O cone with cusp nose (model 8 ) .  

Figure 2 .- Concluded. 
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L-79-869 

( a )  Wooden p a t t e r n  (model 4 ) .  

L-79-2891 

(b) Sand mold (model 6). 

Figure 3.- Pho tographs   i l l u s t r a t ing   s t eps   i n   ca s t ing  of aluminum pressure models. 
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"" 

( a )  Spherical-nose cone (model 5) . 

L-82- 158 

(b) Cusp-nose cone (model 8). 

Figure 4.- Representative  schlieren  photographs  for  the  spherical-nose 
cone  (model 5) and cusp-nose cone (model 8) i n  Mach 5.92 air .  
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Figure 5.- Ske tch   i l lus t ra t ing   loca t ion  of the moment reference  center  
f o r   t h i s  s t u d y .  
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(a) Normal-force coefficient,  model 5 .  

Figure 6.-  Effect of the  presence of a pitot-pressure probe on  measured  aerodynamic 
coefficients €or models 5 and 7 i n  the Mach 6 tunnel. 
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(b) Normal-force coef f ic ien t ,  model 7.  

Figure 6. - Continued. 
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Figure 6.- Continued. 
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(e )  Pitching-moment coef f ic ien t ,  model 5. 

Figure 6 .- Continued. 
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( a )  Flow conditions. 

Figure 7.- Cal ibra t ion   resu l t s  for CFHT. 
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Figure 7. - Continued. 
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(b) Vertical and horizontal  pitot-pressure  surveys a t  an axial 
station equal to zero. 

Figure 7.-  Continued. 
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(a)  Hyperboloid  (model 1 ) .  a = 16O; M, = 5.73. 

Figure 8 . -  Shock shapes  measured  on  the  pressure and heat-transfer  hyperboloid and 
paraboloid  (models 1 and 3, series 1) i n  Mach 6 a i r .  Open symbols denote  readings 
from pr int s ;   c lo sed  symbols denote  readings made with  an  enlarger.  
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Figure 8 .- Continued. 
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58 



1.6 

1.2 

.8 

.4 

- 
rb 
y o  

- .4 

-.8 

-1.2 

-1.6 

0 Air 5.73 5.21 

0 Air 6.01 5.27 
A CF4 6.13 12.06 4 3  h 

A 

- .4 
X/l'b 

(b) a = 4 O .  

Figure 1 1. - Continued. 

59 



1.6 

1.2 

.8 

.4 

- 
rb 
y o  

- .4 

-.8 

-1.2 

-1.6 
-.4 

Test 
gas 

0 Air 
A Cq 

M, p2/pm 

5.73 5.21 
6.13  12.06 

0 

0 €3 

A 

O A  

O A  

0 A 

x/rb 

(c) a = 8 O .  

Figure 11 .- Continued. 

60 



1.6 

1.2 

.8 

.4 

- 
'b 
y o  

- .4 

-.8 

-1.2 

-1.6 

0 Air 5.73 5.21 

0 Air 6.01 5.27 
A CF4 6.13 12.06 e a  

x/rb 

(dl a = 120.  

Figure 1 1. - Continued. 

F 

61 



1.6 

1.2 

.8 

.4 

- 
'b 
y o  

- .4 

-.8 

-1.2 

-1.6 
-.4 

Test 
gas 

- 0 Air 
A C% 

M, p2/p, 

5.73 5.21 
6.13 12.06 

0 

0 

O A  

A 

A 

O A  

0 A 

0 .4 .8 1.2 1.6 2 .o 2.4 

( e )  a = 1 6 O .  

Figure 1 1  .- Continued. 

62 



Test 
gas 

Mw p2/pw 

1.6 

1.2 

.8 

.4 

- 
'b 
y o  

- .4 

-.8 

-1.2 

-1.6 

5.73 5.21 
6.13 12.06 0 A 

O A  

O A  

O A  

0 A 

I I I n 
LI 

-.4 0 .4 .8 1.2 1.6 
- 

x/rb 

(f) a = 2 0 ° .  

Figure 1 1. - Concluded. 

63 



1 . r  

1 .: 

.I 

.4 

- 
rb 
' a  

- .4 

-.8 

-1.2 

-1.6 
- .4 

m 

I I I 
0 .4 .8 

. "  

( a )  A i r ;  Mm = 5.73; p2/p, = 5.21. 
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pressure model (model 3, s e r i e s  1) in Mach 6 a i r  and CF4. 
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Figure 25 . -  Pressure  distributions measured on the  hyperboloid  (model 1 ,  s e r i e s  1 )  
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